Bürgerdialog Kommunale Wärmeplanung Großenhain

19.08.2025 | Gregor Hillebrand-Kandzia

Agenda

- 1 Vorgehen und gesetzliche Rahmenbedingungen
- 2 Ergebnisse der Bestandsanalyse
- Möglichkeiten der Umsetzung des GEG auf Basis lokaler Potenziale

VORGEHEN UND GESETZLICHE RAHMENBEDINGUNGEN

Ziel des WPG ist die kosteneffiziente, nachhaltige und treibhausgasneutrale Wärmeversorgung bis spätestens zum Jahr 2045

Gebäudeenergiegesetz (GEG)

ab 2045 ausschließlich Betrieb von Heizungsanlagen in Gebäuden mit erneuerbaren Energien/biogenen Brennstoffen

Geplantes Wärmenetz

Geplantes Wasserstoffnetz (primär zur Versorgung von Industrie und Verkehr)

Individuelle Umsetzung

Wärmeplanungsgesetz (WPG)

Fertigstellung kommunale Wärmeplanung bis 06/2026 für Kommunen > 100.000 Einwohner 06/2028 für Kommunen < 100.000 Einwohner

Projektschritte

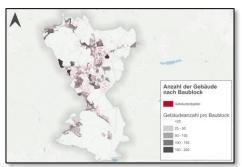
Januar 2025 bis Juli 2025

Juli 2025 bis Januar 2026

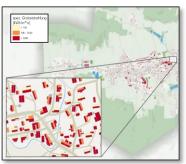
Bestandsanalyse

Potenzialanalyse

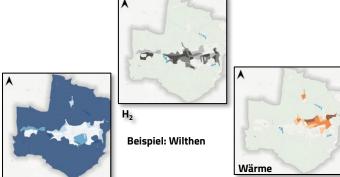
Zielszenario


Veröffentlichung und Umsetzung

Zunächst wurde der aktuelle Wärmebedarf und die vorhandene **Infrastruktur** analysiert und in einem digitalen Zwilling von Radeberg festgehalten.


Anschließend wurde geprüft, ob erneuerbare Energiequellen oder Abwärme genutzt werden können, um den Wärmebedarf nachhaltig zu decken und welche Sanierungspotenziale vorliegen.

Im Zielszenario werden wir festhalten, welche Wärmever**sorgungsgebiete** sich künftig für welche Wärmeversorgungsarten am Besten eignen.


Die **Ergebnisse** werden in einem umfangreichen **Bericht** festgehalten, der auszugweise auf der Internetseite der Stadt der Öffentlichkeit zugänglich gemacht wird.

Beispiel: Radeberg

Beispiel: Wilthen

Dezentrale Bereiche

Involvierte im Projekt

- gesetzliche Vorgabe zur Erstellung der KWP
- planungsverantwortliche Stelle
- regionale Informationen und Ortskenntnis

Industrie, Versorger, Wohnungswirtschaft

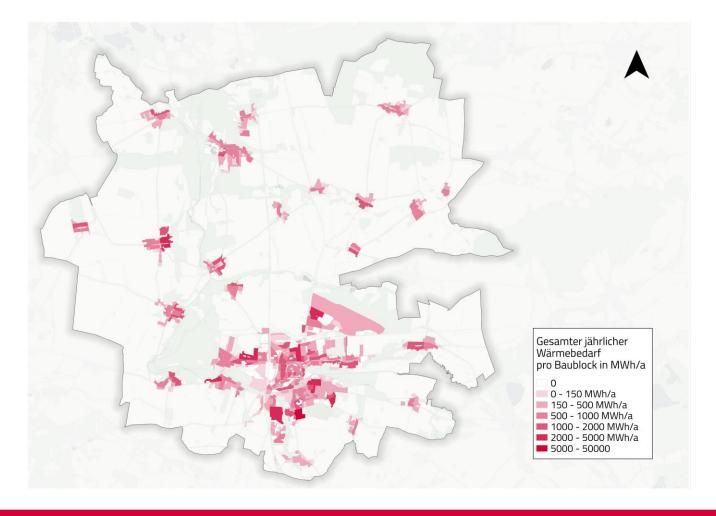
regionale Informationsträger

Wärmeplan

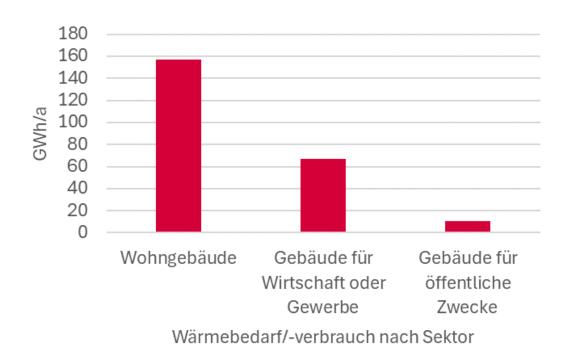
Ämter

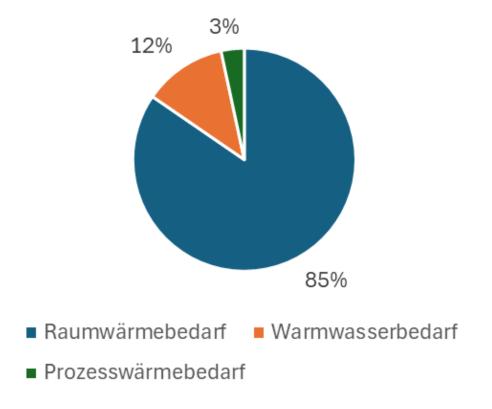
regionale Informationsträger

- umfassende Datenbasis
- Technologie- und Infrastruktur-Know-How
- planerische Kompetenz


ERGEBNISSE DER BESTANDSANALYSE

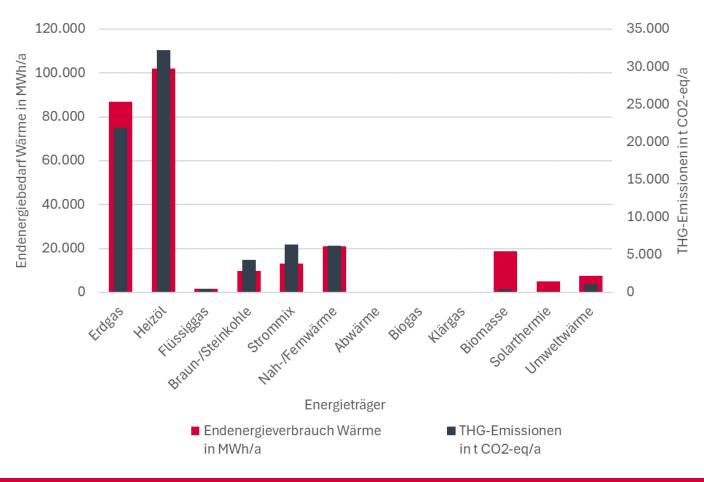
Aktueller Gesamtwärmebedarf


Der meiste Wärmebedarf fällt im Stadtgebiet an.



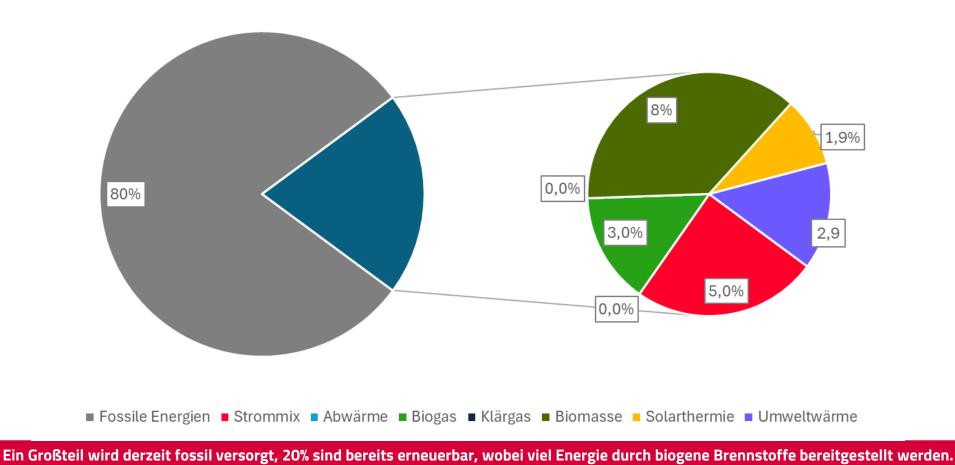
Verteilung des Gesamtwärmebedarfs

Der Wärmebedarf fällt hauptsächlich für Raumwärme in Wohngebäuden an.



Endenergiebedarf und Treibhausgas (THG)

Heizöl und Erdgas als wesentliche Energieträger und Emittenten.



Anteil erneuerbarer Energien und unvermeidbarer Abwärme

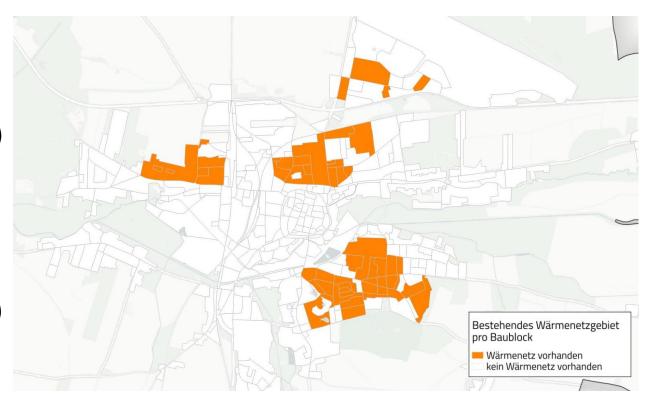
DREI MÖGLICHKEITEN DER UMSETZUNG DES GEG AUF BASIS LOKALER POTENZIALE:

WÄRMENETZE

WASSERSTOFFNETZE

INDIVIDUELLE UMSETZUNG (DEZENTRALE VERSORGUNG)

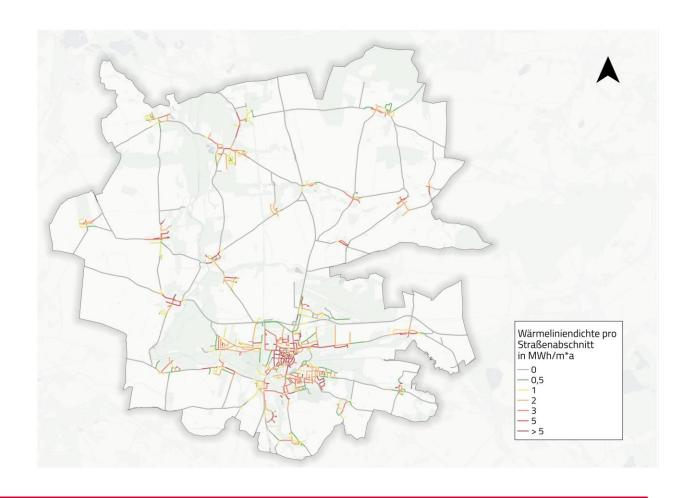
WÄRMENETZE



Bestehende Wärmenetze

- Wärmenetzbetreiber Danpower
 - Wärmenetz "Am Kupferberg" (ca. 80 Anschlussnehmer)
 - Wärmenetz "Külzstraße" (ca. 40 Anschlussnehmer)
 - Wärmenetz "Preuskerviertel" (ca. 50 Anschlussnehmer)
- Wärmenetzbetreiber iES Energie
 - Wärmenetz "Fliegerhorst" (ca. 5 Anschlussnehmer)
 - Biogasanlage
 - Wärmeübergabe an Wärmenetz "Preuskerviertel"

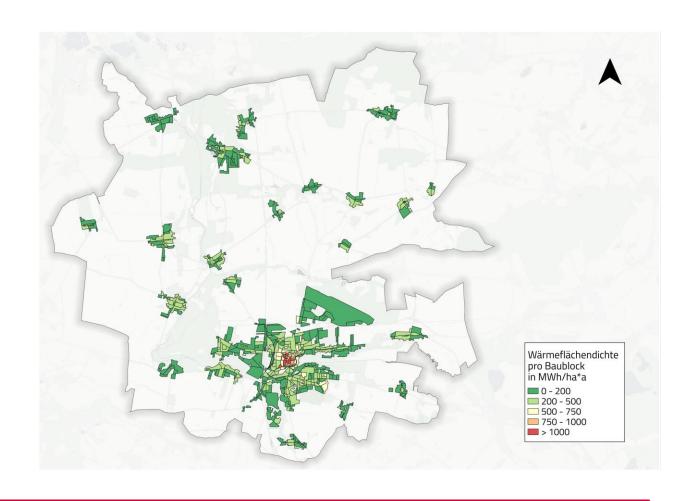
Großenhain hat 4 Wärmenetze im Stadtgebiet.



Wärmeliniendichte als Indikator für neue Wärmenetze

- <u>Definition</u>: Wärmeliniendichte ist die Summe der Wärmeverbräuche aller Gebäude entlang eines Straßenabschnitts geteilt durch die Länge des Abschnitts
- Bedeutung: Wärmeliniendichte ist ein wichtiger Kennwert sowie Planungsgrundlage für effiziente und wirtschaftliche Wärmenetze
- Die Identifikation von neuen Wärmenetzen und Wärmenetzausbaugebieten erfolgt in der weiteren Projektbearbeitung

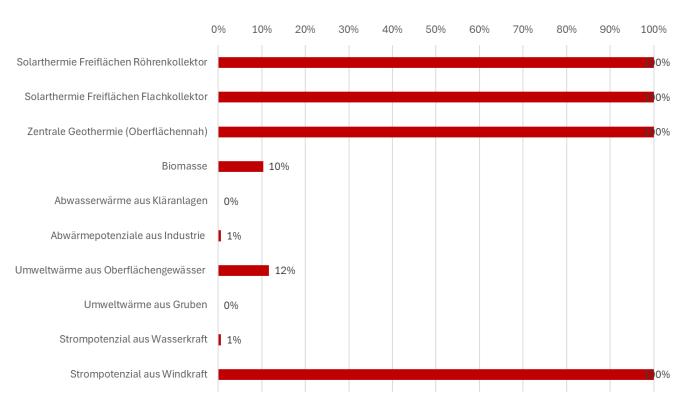
Je höher die Wärmeliniendichte, desto eher lohnt sich eine zentrale Energieversorgung.



Wärmeflächendichte als Indikator für neue Wärmenetze

- <u>Definition</u>: Wärmeflächendichte ist die Summe der Wärmeverbräuche aller Gebäude innerhalb einer Fläche (z.B. Baublock) geteilt durch die Größe der Fläche
- Bedeutung: Wärmeflächendichte ist ein wichtiger Kennwert sowie Planungsgrundlage für effiziente und wirtschaftliche Wärmenetze
- Die Identifikation von neuen Wärmenetzen und Wärmenetzausbaugebieten erfolgt in der weiteren Projektbearbeitung

Je höher die Wärmeflächendichte, desto eher lohnt sich eine zentrale Energieversorgung.

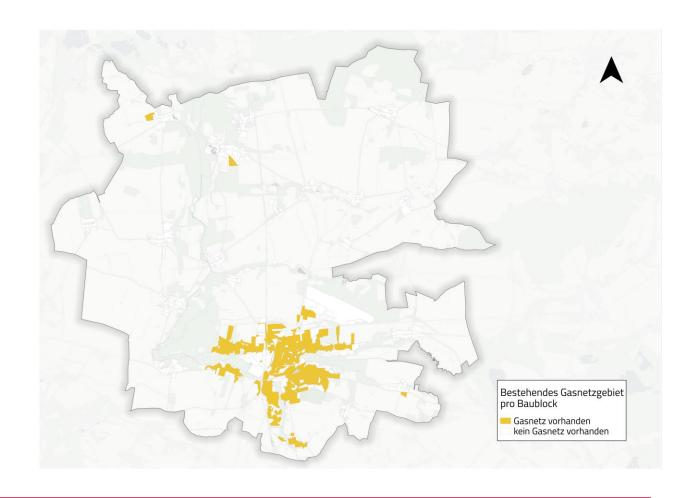


Sind die zentralen Potenziale hinreichend für die Wärmewende im Untersuchungsgebiet?

Zentrale Potenziale	Realisierungshemmnisse
Solarthermie auf Freiflächen	Saisonale Schwankungen erfordern große Langzeitspeicher / Überkapazitäten
Zentrale oberflächennahe Geothermie	Standortabhängigkeit, Grundwassergefährdung, Begrenzte Leistung pro Fläche, Bodenbeschaffenheit
Biomasse	Filtersysteme (Feinstaub), Logistik für Biomasse- Lagerung
Abwasserwärme aus Kläranlagen	Korrosions- und Verschmutzungsanfälligkeit, niedriges Temperaturniveau
Zentrale Abwärmepotenzial e aus der Industrie	Temperaturunterschiede, Verschmutzungsbedingte Korrosion,
Umweltwärme aus Oberflächengewässern	Verschmutzungen der Gewässer, schwankende Wassertemperaturen
Umweltwärme aus Oberflächengewässern / Gruben	niedriges Temperaturniveau; Schwankende Pegelstände und Durchflussmengen
Wasserkraft	Schwankende Durchflussmengen
Windkraft	Hinreichende Abstände zur Wohnbebauung

Anmerkung: Das Diagramm zeigt die technisch nutzbaren Potenziale unter Berücksichtigung des gültigen Planungs- und Genehmigungsrechts im prozentualen Vergleich zum aktuellen Gesamtwärmebedarf der Gemeinde.

WASSERSTOFFNETZE

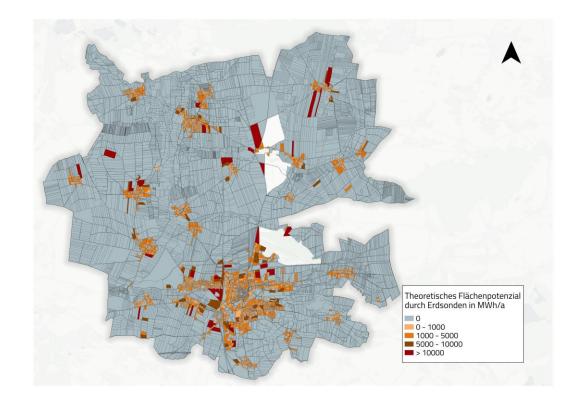


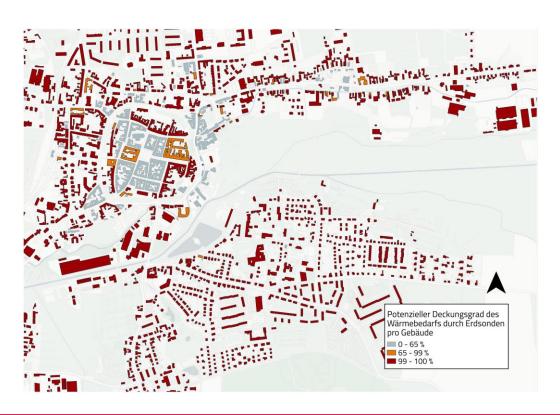
Bestehendes Erdgasnetz und Flüssiggasnetze

- Drei kleinere Flüssiggasnetze von Tyczka Minol in Zabeltitz, Görzig und Rostig
- Erdgasnetz der SachsenNetze im Stadtkern
 - Kein wesentlicher Ausbau des Erdgas-Verteilnetzes geplant
 - Vorhandenes Erdgas-Verteilnetz prinzipiell für die Nutzung von Wasserstoff geeignet
 - Aber:
 - Wasserstoff-Infrastruktur (Kernnetz) noch im Aufbau
 - Zur Verfügung stehende Menge und Preis des zukünftig verfügbaren Wasserstoffs ungewiss

Ein zentrales Erdgasnetz im Bereich der Stadt Großenhain. 3 kleine Flüssiggasnetze in den Ortsteilen.

DEZENTRALE VERSORGUNG

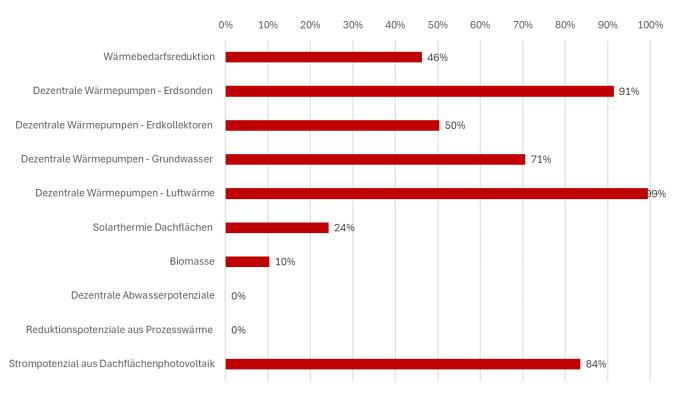




Beispiel: Untersuchung Potenzial dezentrale Erdsonden-Wärmepumpen

- Ausschlussflächen: Wasserschutz- und Überschwemmungsgebiete
- Potenzial pro Flurstück

- Ausschlussflächen: Wasserschutz- und Überschwemmungsgebiete
- Potenzial pro Gebäude (**Deckungsgrad**)


Durch Erdsonden-Wärmepumpen kann theoretisch ca. 91% des Raum- und Trinkwarmwasserbedarfs gedeckt werden.

Sind die dezentralen Potenziale hinreichend für die Wärmewende im **Untersuchungsgebiet?**

Dezentrale Potenziale	Realisierungshemmnisse
Reduktionspotenzial für Raumwärme & TWW	Kombination mit bereits bestehenden Heizsystemen, Denkmalschutz
Dezentrale oberflächennahe Geothermie	Grundwasserverunreinigung, Flächenbedarf, Bodenbeschaffenheit
Dezentrale Grundwasserwärme	Genehmigungshürden, Hoher Grundwasserflurabstand, Gefahr von Ressourcen Übernutzung
Dezentrale Luftwärme	Effizienzverlust bei kalten Temperaturen, Schallschutz
Biomasse	Filtersysteme (Feinstaub), Logistik für Biomasse- Lagerung
Dezentrale Abwasserwärme	Korrosionsanfälligkeit, effiziente Wärmeübertragung erfordert Anpassung an den Durchfluss und die Abwassertemperatur
Reduktionspotenzial für Prozesswärme	Material- und Korrosionsanfälligkeit, Anpassung der Brennersysteme, Zwischenspeicherung, Steuerung der Wärmeflüsse
Solarenergie auf Dachflächen (PV & ST)	Traglast, statische Anforderungen, Effizienzverluste bei ungünstiger Dachausrichtung/Verschattung, Denkmalschutz

Anmerkung: Das Diagramm zeigt die technisch nutzbaren Potenziale unter Berücksichtigung des gültigen Planungs- und Genehmigungsrechts im prozentualen Vergleich zum aktuellen Gesamtwärmebedarf der Gemeinde.

Vielen Dank für Ihre Aufmerksamkeit!

waermeplanung@sachsenenergie.de

